
Design Automation Framework for
Application-Specific Logic-in-Memory Blocks

Qiuling Zhu⋆, Kaushik Vaidyanathan⋆, Ofer Shacham†, Mark Horowitz†, Larry Pileggi⋆, Franz Franchetti⋆
⋆Dept. of Electrical and Comp. Eng., Carnegie Mellon University, Pittsburgh, PA, USA

†Dept. of Electrical Eng., Stanford University, Stanford, CA, USA
Email: qiulingz@andrew.cmu.edu, franzf@ece.cmu.edu

Abstract—This paper presents a design methodology for
hardware synthesis of application-specific logic-in-memory
(LiM) blocks. Logic-in-memory designs tightly integrate spe-
cialized computation logic with embedded memory, enabling
more localized computation, thus save energy consumption. As
a demonstration, we present an end-to-end design framework
to automatically synthesize an interpolation based logic-in-
memory block named interpolation memory, which combines
a seed table with simple arithmetic logic to efficiently evaluate
functions. In order to support multiple consecutive seed data
access that is required in the interpolation operation, we
synthesize the physical memory into the novel rectangular-
access smart memory blocks. We evaluated a large design
space of interpolation memories in sub-20 nm commercial
CMOS technology by using the proposed design framework.
Furthermore, we implemented a logic-in-memory based com-
puted tomography (CT) medical image reconstruction system
and our experimental results show that the logic-in-memory
computing method achieves orders of magnitude of energy
saving compared with the traditional in-processor computing.

Keywords-Application-specific Logic-in-Memory; Design Au-
tomation; Hardware Synthesis; Interpolation; Tomographic
Reconstruction;

I. INTRODUCTION

In the conventional von Neumann model computing sys-
tems are physically and logically split between memory and
CPUs. This implies that data must be moved between storage
and processor. The lower speed of the memory relative to
the processor results in the memory wall, which has severely
limits the efficiency of many applications. When running
today’s memory intensive applications, modern computers
spend most of their time and energy moving data rather than
on computation, wasting energy. Further, today’s systems are
power limited [1], [18], [10], exacerbating the problem.

Recent studies on sub-20nm circuit designs proposed a
construct-based design methodology, in which both memory
and logic can be mapped together onto a small set of
well-characterized regular patterns [12], [13]. This provides
opportunities to insert logic patterns reliably next to memory
patterns without concern for creating layout hotspots or
potential yield problems.

Leveraging this capability we propose application specific
logic-in-memory (LiM), as shown in Fig. 1. LiM moves part
of a program’s computation directly into the memory but

Figure 1. Logic-in-Memory Computing Paradigm: application-specific
logic for localized computation is hidden behind a memory abstraction.

keeps the familiar memory interface. It is easy to program, as
the computational operations are hidden behind the memory
abstraction. In LiM, the embedded logic and its associated
data storage are integrated as close as possible, with the
primary goal to enable localized computation, thereby mini-
mizing the data transfer between memory and processor and
thus saving energy.

A key aspect of LiM is to be application-specific, that
is, the embedded logic computation is highly specialized
for a particular application domain. A given algorithm class
or application domain gives rise to a parameterized design
tradeoff space, from which a specialized hardware is then
built to meet the required function, under the performance,
area and power requirements. LiM benefits from algorithm
and application-level knowledge to optimize the embedded
logic and memory to a level that is impossible with general
purpose computing or configurable hardware computing. Lo-
calized computation in combination with application specific
logic provides the desired design efficiency of LiM blocks.

A simple example of application-specific LiM is the
memory-mapped interpolation, where the interpolated data
is accessible as if it was stored in a memory, but actually
is computed on the fly from a small seed table. Knowledge
about the function to be interpolated (e.g., twiddle factors
in the fast Fourier transform, FFT) enables optimization
through customization. This simple but versatile LiM block
is underlying our discussion of design methods for LiM. The
idea of integrating logic and memory is not completely new,
but a key challenge is to design such application-specific
memory blocks affordably and efficiently.

Contribution. In this paper we present a design frame-
work enabling end-to-end hardware generation of applica-
tion specific LiM blocks that allows users to design, cus-
tomize, and optimize an interpolation-based LiM structures.
We show the applicability for a wide range of applications
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from signal processing (e.g., FFT twiddle factor genera-
tion) to image processing (e.g., computed tomography (CT)
medical image reconstruction). An important observation is
that the seemingly simple idea of interpolation becomes a
powerful tool when flexible configurability (e.g., relative cost
of memory access vs. logic, and different types of logic to
embed) is provided in the design phase.

Importantly, the ability to physically synthesis these
LiM blocks affordably is enabled by our previous work
of “smart” embedded memory synthesis framework which
is built from the construct-based logic and memory co-
design method [13]. Synthesis results from the framework
at 14nm technology show that the resulting LiM hardware
is efficient in area, power and latency. Furthermore, our
architectural simulations demonstrate orders of magnitude
of energy saving from LiM computing compared with tra-
ditional processor-centric computing.

Related work. The concept of processor-in-memory [10]
is grounded in the same observation about the Von Neumann
architecture’s inherent problem and has been well-studied.
Application-specific LiM takes this idea a step further:
embedding processors in memory results in too inefficient
structures and too much overhead. Thus, application-specific
LiM inserts simple, specialized, but powerful logic into
memory. Logically similar to our approach, texture mapping
on graphics processors [19] provides floating-point address-
able memory, where non-integer locations are interpolated.
However, the physical implementation is different and the
concept of our LiM targets at broader application area.

Interpolation and related areas are well-researched [11].
For example, [9] studied table-based polynomial methods for
fast hardware evaluations in FPGAs. In contrast, our work
mainly targets at Application-Specific Integrated Circuits
(ASICs). The name interpolation memory was first proposed
by [15] for general continuous function evaluation, and
they provide a generalized approach for standard elementary
function evaluation that is equivalent to a mathematical
library. That work provides detailed numerical analysis of
the method. In contrast, the focus of our work is to use the
concept of interpolation memory in an application aware
manner and to automatically synthesize the resulting hard-
ware on a nanoscale technology.

Organization. The paper is organized as follows. In
SectionII we describe the concept, design parameterization
and tradeoff analysis of an interpolation-embedded LiM
block. In SectionIII, we present a tool framework for LiM
hardware synthesis. We discuss the results in SectionIV and
draw conclusions in SectionV.

II. LOGIC-IN-MEMORY

In this paper we are developing a general design flow for
the application specific LiM. For demonstration purpose, we
restrict our examples and evaluation to a special but impor-
tant class of LiMs, one or multi-dimensional interpolation-

embedded memory blocks (i.e., interpolation memory). Such
LiMs have a large design space where memory size, inter-
polation method, and interpolation accuracy are traded off to
minimize area and energy consumption under given latency
and accuracy. We first detail the general LiM concepts and
then discuss the details of interpolation memory.

A. Application-Specific Logic-in-Memory

General concept. Logic-in-memory provides a memory
abstraction to move computation to the data, as opposed to
moving data to the computing element. From the outside
(e.g., a processor) it looks like a regular memory but the
structure consists of a smaller memory plus some logic.
When reading from an address, the structure returns a value
that is computed from the address value and the contents
of the memory. A certain part of the address space needs
to provide access to the small physical memory to be able
to seed the computation. LiM incorporates logic function,
or “intelligence,” into the memory. While arbitrarily com-
plicated functions are possible, efficiency requires these
functions to be simple and only require a few localized
memory accesses. LiM is most valuable for power-critical
data-dominated applications with irregular and unpredictable
memory accesses patterns (thus they cannot exploit the
memory hierarchy and caches effectively), and a substantial
amount of data transfer will be avoided.

Since the logic is implemented as part of the memory,
its functionality must be general enough to benefit enough
important applications but also needs to be optimized enough
to the targeted application to provide a real gain. It is
necessary to pick the right primitives that can successfully be
implemented using LiM and are widely enough applicable.
Our analysis shows that interpolation memory (discussed
next) is such a very general LiM building block that can
benefit many signal and image processing algorithms. Fur-
ther, the high computational demands of these algorithms
and the high volume of devices with these applications make
it worthwhile to provide specialized and optimized hardware.

Integration into processors. From the software perspec-
tive LiM acts like a special-purpose on-chip memory or
scratchpad, taking in an arbitrary address in the virtual
read address space, but returning data that is computed.
Further, control and configuration is also exposed through
the memory interface. This makes programming the LiM
unit very simple. One can easily envision adding a control
flag to on-chip storage that engages or disengages the
embedded logic, thus not impacting normal execution but
significantly enhancing the functionality.

B. Interpolation Memory

Interpolation memory holds function values at evenly
spaced, non-contiguous memory addresses, and the inte-
grated logic performs polynomial interpolation operations
on each read reference for locations that do not hold data.

128128128126



Thus, these LiMs contain a seed table that stores the known
function values, and compute “in-between” values on the
fly. Interpolation memory has a larger memory read address
space than write address space.

Applications. Interpolation embedded LiM hardware ac-
celerators can be used for mathematical function evalu-
ation [15], [11] and image transformations (e.g., image
rotation, scaling) [20]. In this paper we will particularly
discuss the interpolation memory for use in FFT twiddle
factor generation and in computed tomography (CT) image
reconstruction [6]. In some other situations, the advent
of LiM requires to change those algorithms in order to
adapt to the logic-in-memory computing. For example, the
well-known polar formatting algorithm (PFA) in Synthetic
Aperture Radar (SAR) image formation is usually based
on a FFT-based polar formatting algorithm, and it is too
complicated to be embedded in the memory [5]. In [22],
[21], we derive a local interpolation-based variant of SAR
PFA algorithm that has equal accuracy as the traditional FFT-
based algorithm but fits well in the LiM computing paradigm
for energy savings.

1D interpolation memory. We first consider the one-
dimension (1D) interpolation memory. Assume N = 2n is
the total number of the discrete data points to be evaluated
in the evaluation interval. We evenly partition the evaluation
interval into 2k segments, so each segment contains 2r

elements (r = n − k). However, only one element in each
segment is stored, so the memory size is reduced from 2n

to 2k. A polynomial function is defined for each segment
to approximate non-stored function values. In this logic-in-
memory abstraction, 2n is defined as the local memory size
and 2k is defined as the physical memory size and 2r is de-
fined as the memory compression ratio. Power-of-2 indexing
mechanism is applicable for most interesting problems, and
it largely simplifies the hardware implementation.

From the user’s point of view, interpolation memory is a
full size memory with 2n-size address space that supports
1-clock cycle random memory read access. So it has n-bits
read address space. However, internally the address is split
into two parts. The higher k bits are used to address the 2k-
size physical memory. And the lower r = n−k bits are used
to specify the distances between the evaluated data point and
its nearest memory references (i.e., interpolation distances).
The resulting approximated function value is the weighted
approximation of the neighboring memory references, and
the weights are set by interpolation distances. The number of
nearest neighborhood memory references to be considered
is determined by the interpolation order.

2D interpolation memory. The idea can be extended to
two and more dimensions; we limit the discussion to two
dimensions. Given the addresses in the X-coordinate and Y -
coordinate, 2D interpolation memory returns the correspond-
ing function values in a 2D data array. The returned values
are interpolated from its sparsely sampled neighborhood
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Figure 2. Interpolation Memory Architecture: n bit read address space
and k bit write address space (i.e., seed table size); the “in-between” values
are approximated from 16 neighboring memory references on the fly.

function values in orthogonal dimensions. These sparsely
sampled function values are pre-calculated and stored. In
the left part of Fig. 2, we show the hardware structure of a
2D cubic (bi-cubic) interpolation memory.

C. Interpolation Memory Implementation

We now discuss the hardware implementation of inter-
polation logic. Using Newton’s divided differences, integer
data types, and two-power sub-sampling, very efficient im-
plementation is possible.

Newton’s divided differences. We use Newton’s divided
differences interpolation polynomial since it is easy to
realize in hardware and amenable to be parameterized [3].
The dth-order function value Pd(x) is calculated from its
neighborhood tabulated functions values f(x) at points of
0, . . . , x(d−1) and it’s shown as follows:

Pd(x) = k0+k1·(x−x0)+. . .+k(d−1)·(x−x0) . . . (x−xd−1)

For i ∈ [0, d − 1], ki = f (i)(x) is the ith order divided
difference of f(x), and the computation of ki in hardware
for integer data types only involves additions and shifts. zi =
x − xi are so-called the interpolation distances, which are
determined by the lower r bits of the read address. The
computational complexity, and the overall hardware cost is
proportional to the interpolation order.

Separable 2D interpolation. 2D interpolation (e.g., bi-
linear, biquadratic, bicubic) can be separated into multiple
1D interpolation in both orthogonal axes. For example, the
2D cubic interpolation in Fig. 2 can be separated into four
horizontal 1D cubic interpolations and one vertical 1D cubic
interpolation (or vice versa). In the right side of Fig. 2 we
illustrate the datapath of a 1D cubic interpolation operation.
The bit widths of the data path can also be precisely specified
so as not to implement excessive bits, and not to introduce
additional error.

Floating-point interpolation. For sufficiently smooth
functions (which is a precondition for meaningful interpo-
lation), it is easy to convert integer arithmetic designs to
full IEEE floating-point designs. Due to the limited dynamic
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(a) Linear interpolation
(1 2 memory access)  

(b) Cubic interpolation

(1 4 memory access) (c) Bilinear interpolation

(2 2 memory access) 

(d) Bicubic interpolation
(4 4 memory access) 

Figure 3. Data Access Pattern in Interpolation: gray array represents the
stored function values and the black points are the nearest neighbors to be
accessed for the interpolation of the non-stored function values (red stars).

range for a specific known function (e.q., | sin(x)| ≤ 1),
fixed-point interpolation memory discussed above with some
extra precision beyond the floating-point mantissa’s preci-
sion in combination with some logic and lookup-tables for
the exponent identification allows to compose full IEEE-
compatible single and double precision numbers with only
integer arithmetic.

Design trade off. We only consider up to the 3rd order
polynomial interpolation, that is, linear (d = 1), quadratic
(d = 2), and cubic (d = 3). The interpolation order
(d) together with physical memory size (2k) determine the
interpolation accuracy (binary precision bits, w). Numerical
analysis shows that for any function f(x) that has d + 1
derivatives, d + 1 additional precision bits (w) of the com-
puted P (x) are obtained for each additional physical address
bit (k) for interpolating order (d) [15]. The tradeoff among
these parameters is shown in (1), in which e is the error bits
in the precision bits w that are tolerated by the application.

(w − e) ∝ (d+ 1)k (1)

(1) gives rise to a design space involving data precision
bits, interpolation accuracy, interpolation order, and memory
size. And it further leads to different memory/logic area and
energy costs for a desired accuracy. In Section III we will
discuss our approach to help hardware designers to explore
this tradeoff space efficiently and enable them to build the
specialized hardware to meet their desired design specs.

FFT Twiddle factor interpolation. One important exam-
ple where interpolation memory can provide a high-precision
low-cost alternative is the FFT twiddle factor evaluation.
Twiddle factor is the root-of-unity complex multiplicative
constant in the butterfly operations of most FFT algorithms.
Typically, N -point FFT requires equal-size unique discrete
sin and cos values. Pre-calculation requires O(N) storage
while online computation in hardware is expensive [16].
LiM combines small seed table and online computation, thus
reduces the overall hardware cost, but still allows single-
cycle data access and provides desired accuracy. We will
use twiddle factor interpolation memory as an illustrative
LiM design example in Section III.

D. Rectangular-Access Smart Memory

Single-cycle interpolation memory requires to access mul-
tiple consecutive elements (in 1D or 2D data array) stored
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Figure 4. Customized Rectangular Access Memory: customized memory
periphery design allows parallel memory banks to share the x-decoder.

in SRAM within a single cycle. Traditionally, this is ac-
complished by distributing data across multiple memory
banks so that for any consecutive access all data elements
are retrieved from different banks without conflicts. Using
multiple SRAM banks incurs high overhead since every
memory bank requires its own decoder logic. Using logic-
in-memory it is possible to build multi-bank memories
that share parts of the decoder logic to exploit the known
access pattern. Fig. 3 shows the access patterns for four
interpolation memories (linear, cubic, bilinear and bicubic).
For example, a 4× 4 rectangular memory access is needed
for the bicubic interpolation.

Basic idea. We exploit the fact that we always read
a constant number of consecutive elements per cycle for
each interpolation. The core observation is that after address
decoding, the activated wordlines of all memory banks
are always adjacent to each other. Based on that, it’s
possible to optimize the multi-banking memory system to
save the periphery overhead. We employ the a customized
multi-banking SRAM design topology [14], which provides
around 50% area and power savings compared with the tra-
ditional multi-banking memory design. However, the design
of such customized memory requires careful circuit design,
sizing and layout, which is a significant design cost if it
cannot be automated.

Memory design. We define the functionality of memory
to support one-clock-cycle rectangular access of 2a×2b data
points from a 2m × 2n 2D data array. The input of the
memory system is the top-left coordinate of the accessing
rectangular block (x[m−1:0], y[n−1:0]) and the outputs are
all the data point inside the rectangular block. For bicubic
interpolation, we have a = b = 2 .

To support one-cycle consecutive access of 2a data points
in x dimension and 2b data points in y dimension, the
parameterized memory is divided into 2a memory blocks;
and in each block, there are vertically parallel 2b memory
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banks. To control the memory block aspect ratio, we let
each word of a memory bank (bank word) holds 2c data
points, therefore a block word contains 2(b+c) data points.
The 2D data array first distributes its 2m data rows into
2a memory blocks row by row (e.g., block-i holds row[i],
row[2a + i], row[2a+1 + i], . . .). All the 2a memory blocks
have the same structure. Fig. 4 shows the organization of
block-0 when m = n = 6, a = b = 2, c = 2.

Localized embedded logic. The main idea is to let 2b

memory banks in each memory block share a modified X-
decoder by using the same method described in [14]. The
X-decoder is specifically designed to activate two adjacent
wordlines simultaneously. That is, when one block wordline
is asserted, the next block wordline is also asserted by the
OR gate operation of every two adjacent wordline signals.
Another Y -decoder is used to select one of the two activated
wordlines for each memory bank with the AND operations.
Each memory bank word holds 2c data points but each time
only one data point of them is required. A column MUX is
designed to select one data element for each memory bank
and the column MUX is controlled by the lower (b+ c) bits
of address y (y[b+c−1:0]).

As shown in Fig. 4, both the first wordline (WL[0]) and
the second wordline (WL[1]) are initially activated by X-
decoder but Y -decoder further selects the WL[1] for bank0
and WL[0] for the other three banks. After the column
MUX, block0 outputs data series of ‘8−5−6−7’, which are
then reordered to be ‘5−6−7−8’. With some simple logic
for data reordering, the smart memory outputs the required
2a × 2b data points in order simultaneously. As shown in
Fig. 4, the distributions of address bit to each memory com-
ponent is parameterized. By specify these parameters, the
resulting memory architecture can be precisely determined.

When m = 0 and a = 0, the problem is simplified to
1D 1 × 2b consecutive data access from a 1 × 2n-size 1D
data array (e.g., 1 × 4 neighborhood access in a 1D cubic
interpolation). The implementation of the memory system is
then simplified to have only one memory block.

Analysis. Compared with the conventional multi-banking
memory design, the amount of memory bank periphery
circuits is reduced from 2a+b to 2a. As is observed in
Fig. 4, the resulting memory architecture has the embedded
logic gates (e.g. the AND gates) tightly integrated with the
memory cells, and each logic gate communicates with its
local memory cells. The hardware synthesis of these novel
smart memories will be presented in SectionIII.

III. DESIGN AUTOMATION

Application-specific LiM requires to tailor logic and mem-
ory design to application or algorithm specifics. Thus, a
strong design automation tool is required to make the ap-
proach feasible, as hand-designing of LiMs is prohibitively
expensive. We have developed a design generation and
design space exploration tool for the proposed interpolation
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Figure 5. LiM Design Framework

memory, which automates the design of its two key compo-
nents (interpolation logic and rectangular access memory).

Our tool provides designers with a graphical user interface
to select design parameters (e.g., function type, interpolation
order, memory size, and precision bits), and generate the
corresponding hardware for the specified functionality. Un-
specified parameters (free parameters) can be optimized by
the system. A designer then evaluates the obtained designs
and can explore the design space to optimize the design by
varying the parameters. The design framework structure is
shown in Fig. 5.

A. Design Exploration and RTL Generation

Tool infrastructure. The tool frontend is built using our
chip generator infrastructure “GENESIS” [17], [7] and it’s
responsible for application interfacing, design optimization
and efficient RTL generation. To achieve that, it allows
designers to simultaneously code in two interleaved lan-
guages: a target language (SystemVerilog) to describe the
behavior of hardware and a meta-language (Perl) to decide
what hardware to use for given specs. This “dual-language
programming” allows to design an entire parameterized
family of LiM designs, all at once. Design parameters are set
in graphical user interface (GUI) which is defined through
XML files. An optimization engine selects optimized values
for free parameters. The system supports hierarchical com-
position of modules and resolving of parameter constraints
across modules through all hierarchy levels.

Illustrative example. As an example of the application-
specific LiM design tool, we show in Fig. 6 the user
interface of our FFT twiddle factor interpolation memory
design tool. The design parameters are listed in the left
panel of Fig. 6. Functional parameters (e.g., logical memory
size, precision bits, data format, and function type) are set
by the application designer or constrained by higher level
designs (e.g., FFTs) if used in a hierarchical design. In our
example in Fig. 6, the problem is defined of evaluating 128K
32bits fixed-point sin function values. Physical memory size
and interpolation order are two free parameters that are
determined by the optimization engine based on Eq.(1). To
achieve the 32-bits precision with the minimum hardware
cost, the optimal design point found by the optimization tool
is the cubic interpolation memory which stores 128 function
values. Thus, the tool selects physical memory size and
interpolation order to be 128 and cubic automatically. 1D
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cubic interpolation needs to access a 1×4 rectangular access
smart memory and this is implemented by the rectangular
access memory design tool, which is a separate LiM design
tool we built and here acts as a sub-module of the twiddle
factor interpolation memory design framework. Constrained
by the higher-level cubic interpolation memory, it’s param-
eters are shown in right part of Fig. 6. When satisfied with
the parameters, the user simply clicks the “Submit Changes”
button, the tool will start to run and the dedicated hardware
description in Verilog will be generated.

General framework. As seen in the example, we are
building a LiM tool that is hierarchically composed from
lower-level LiM design tools. From these basic building
blocks we have built more hardware design tools for larger
algorithms, including CT image reconstruction, SAR im-
age formatting, geometric image perspective transformations
(e.g., scaling, rotation) and bounded divisions. All of these
examples provide users the hierarchical graphical tools to
design instances of the algorithm with the capability of ex-
ploring the design space to trade off costs and performances.

B. Physical Synthesis

The automated design framework discussed so far is ca-
pable of mapping LiM application specifications to optimal
RTL. Our system also relies on a backend “smart memory”
compiler to physically co-synthesize logic and memory.

Smart memory compiler. Today’s embedded memory is
typically synthesized using an SRAM compiler. But the use
of commercial SRAM hardware IP is unable to incorporate
application-specific customization that are required in the
LiM design and also hinders comprehensive design space ex-
ploration. LiM physical synthesis (the right part of Fig. 5) is
enabled by our smart memory synthesis framework, which is
developed from the pattern construct based logic and mem-
ory co-design methodology [12], [13]. Using this framework,
embedded logic in the LiM is synthesized together with
the memory cells to a small set of pre-characterized layout
pattern constructs. Lithographic compliance between the co-
designed logic and memory ensures sub-20nm manufactura-
bility of LiM circuits.

End-to-end LiM design framework. In our tool chain
we are combining the architectural frontend and physical
backend to build an end-to-end LiM design framework. Its
input is the design specification and the output is ready to use
hardware (RTL, GDS, .lib, .lef). When generating a specified
design point, our framework also reports the area, power and

latency and send them back to the frontend user interface,
from which the designer can evaluate the resulting design
and reset the design specs for redesign if necessary. Our LiM
framework allows an application designer to generate the
optimized “silicon” templates by simply tuning the “knobs”.

IV. EVALUATION AND ANALYSIS

We will evaluate the interpolation memory for accuracy,
area, latency and energy, for multiple application scenarios.
Our automated design framework is used to generate var-
ious design points for evaluation. In addition, we built an
architectural model for evaluating the energy efficiency of
LiM computing paradigm.

Interpolation memory design tradeoff. We first investi-
gate design tradeoffs for twiddle factor interpolation memory
as we discussed in Section II-C. We built a twiddle factor
interpolation memory design tool and generated various
design points for 128K-point FFT with data precisions
from 6 bits to 53 bits. From Fig. 7(a), the accuracy (y
axis) is proportionally increasing with the increasing of
the physical memory address bits (x axis) for all the
linear/quadratic/cubic interpolation methods. As expected,
higher order interpolation method achieves better accuracy
for the same physical memory size. To show the relative
memory and logic cost of different interpolation methods,
in Fig. 7(b), we plotted the physically synthesized memory
area and logic area for all the three interpolation methods.
The baseline design is the full size memory which stores all
the required twiddle factors. All of these designs were set to
produce 128K integer twiddle factors with 32 bit precision.
We see that the total area cost of interpolation memory
is much smaller compared with the full size memory. For
higher interpolation order, logic area is slightly increased,
while memory area reduction is more substantial. So cubic
interpolation is considered to be best design choice to
minimum hardware cost for a given precision. Design points
of 24 bits precision and 53 bits precision can be modified
to generate IEEE single and double precision floating-point
twiddle factors with negligible additional logic cost.

Design efficiency of rectangular access memory. We
demonstrate the design efficiency of the rectangular access
memory that we described in Section II-D. To be consistent
with previous discussions, 1D access windows of 1× 2 and
1× 4 from a 1× 128 data array and 2D access windows of
2× 2, 4× 4 from a 128× 128 2D data array were studied.
For comparison purpose, we also built the traditional multi-
banking memory designs of the same functionalities. By
using our design framework, we synthesized all the designs
with IBM 14nm technology, and measured the power and
memory access time for each. We plotted the power-delay
product (normalized) in Fig. 7(c) for all the four design pairs.
We see that the power-delay-product for rectangular access
memory design is about 3 times to 10 times smaller than
the traditional multi-banking memory design.
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Figure 8. LiM-based CT Imaging Architecture: LiM-1 and LiM-2
implement sin(.) and cos(.) function evaluations; (LiM-3) provides the
intrinsic linear interpolation in backprojection. The whole system presents
itself as a LiM block (LiM-4), storing the projection data in the memory,
but returning the reconstructed image pixels at the querried coordinates.

Application-level energy savings. To demonstrate the en-
ergy saving of the LiM in a real application, we implemented
back-projection-based Computed Tomography (CT) image
reconstruction with and without interpolation memory. As
shown in Fig. 8, projection data (Radon transform data) from
rotation based tomographic scan of an object is obtained and
stored in the memory. The inverse of the Radon transform
can be used to reconstruct the original image by Shepp and
Logan’s algorithm [6], [2]. The algorithm involves intensive
interpolations operations that can be mapped well to our
interpolation memory. As shown in Fig. 8, we implemented
the algorithm by using two trigonometric interpolation mem-
ory (LiM-1 and LiM-2) for sin and cos function evaluations
of the rotation angles where the twiddle factor designs can
be reused. In addition, there is another 1D interpolation
memory (LiM-3) that is required in the algorithm. It’s worth
mentioning that the whole system in Fig. 8 presents itself
as a LiM block (LiM-4), storing the radon transform data
in the memory, but returning the reconstructed image pixel
values at the input coordinates.

To evaluate the energy efficiency and performance im-
provement of LiM computing paradigm, we simulated the
CT algorithm in two variants: (1) we performed the logic
computation in a simple processor with a direct-mapped
SRAM cache storing the Radon transform values, and (2)
we used the LiM hardware to store the raw data and also
performed the interpolation in the memory, and only sent
the final computed pixel value to the processor. Since LiM
performs extra logic computation in memory, we scaled its
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Figure 9. LiM Energy Evaluation for CT Imaging
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Figure 10. LiM Performance Evaluation for CT Imaging

memory accessing power/latency by adding in the normal-
ized logic power/delay from the hardware characterization.
We measured the energy consumptions and latency (the
number of clock cycles taken to finish the task) for image
reconstructions of different image sizes with the Wattch
simulator, an architectural level power simulator [4]. As seen
in Fig. 9 and Fig. 10, the results show that up to 5 orders of
magnitude energy and latency saving were achieved by LiM
compared with in-processor computing for the images been
studied. The main reason is that LiM eliminates the overhead
cost associated with the general-purpose computing, and in
addition minimizes the data transferring.

Other applications and future work. Application-
specific logic enhanced memory customization and its as-
sociated suite of design tool present itself as a design
methodology that balances cost, performance and energy.
The same design methodology can be applied to many other
algorithms that have inherent localized and parallel memory
accessing pattern. For example, we have built LiM hardware
synthesis tools for image perspective transformations, polar-
to-rectangular image resampling, and division by a strongly
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bounded dividend [8]. Moreover, we exploited the interpo-
lation memory design to build a synthetic aperture radar
(SAR) image formation hardware generator, with which
we have generated various design points and validated that
the interpolation-based approach enables substantial energy
savings without sacrificing image quality [22], [21].

Customized to a particular application domain, LiM
blocks are particularly suitable for low-power application-
specific computing systems like embedded digital signal
processing (DSP) processors and mobile graphics processor
(GPU). In the future, we will explore LiM design opportu-
nities for such platforms with the goal of enabling energy
savings and performance improvements. Our design automa-
tion framework is still in the early stages of development and
we are working on improving usability and user friendliness.

V. CONCLUSION

The emergence of constructs based design enables
the energy-efficient implementation of application-specific
logic-in-memory (LiM). We propose an end-to-end design
automation framework for sub-20nm logic-in-memory hard-
ware synthesis and prove its efficacy for an embedded LiM
implementing interpolation. We demonstrate the applications
of application-specific logic-in-memory blocks in signal and
image processing areas, achieving substantial area, perfor-
mance and energy efficiencies at both architectural and
physical level compared with conventional approaches where
logic and memory are split in von Neumann architectures.
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